Supplementation with *Lactobacillus rhamnosus* GG normalizes skin expression of genes implicated in insulin signalling and improves adult acne

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Beneficial Microbes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Fabbrocini, Gabriella Bertona, Marco; 2E Science Picazo, Oscar Pareja-Galeano, Helios Emanuele, Enzo; 2E Science,</td>
</tr>
<tr>
<td>Keywords:</td>
<td>dermatitis, dietary supplements, L. rhamnosus</td>
</tr>
</tbody>
</table>
RESEARCH ARTICLE

Supplementation with *Lactobacillus rhamnosus GG* normalizes skin expression of genes implicated in insulin signalling and improves adult acne

Gabriella Fabbrocini¹, Marco Bertona², Óscar Picazo³, Helios Pareja-Galeano⁴ and Enzo Emanuele²

¹Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy

²2E Science, Via Monte Grappa, 13, I-27038 Robbio (PV), Italy

³Nutriscience Education and Consulting, Avenida das Forças Armadas, nº 4, 6º - E. 1600-082 Lisbon, Portugal

⁴Universidad Europea and Research Institute i+12, Madrid, Spain

Correspondence: Dr. Enzo Emanuele, 2E Science, Via Monte Grappa, 13, I-27038 Robbio (PV), Italy. Phone: +39 338 5054463; E-mail: enzo.emanuele@2escience.com

Running title: Lactobacillus rhamnosus GG in adult acne.
Abstract

Systemic supplementation with probiotics is increasingly being explored as a potential treatment strategy for skin disorders. Because both the gut-skin axis and dysregulation of insulin signalling have been implicated in the pathogenesis of adult acne, we designed the current study to evaluate the effect of supplementation with the probiotic strain *Lactobacillus rhamnosus GG* (LGG) on skin expression of genes involved in insulin signalling and acne improvement in adult subjects. A pilot, randomized, double-blinded, placebo-controlled study was conducted with 20 adult subjects (14 females and 6 males; mean age: 33.7 ± 3.3 years) with acne. Over a 12-week period, the probiotic group (n = 10) consumed a liquid supplement containing LGG at a dose of 3×10^9 CFU/day (75 mg/day), whereas the placebo group (n = 10) received a liquid lacking probiotics. Paired skin biopsies – one obtained before treatment initiation and one obtained at the end of the 12-week treatment period – were analyzed for insulin-like growth factor 1 (*IGF1*) and forkhead box protein O1 (*FOXO1*) gene expression. The clinical criterion for efficacy was the investigator’s global improvement rating on a five-point scale. Compared with baseline, the probiotic group showed a 32% ($P<0.001$) reduction as well as a 65% increase ($P<0.001$) in *IGF1* and *FOXO1* gene expression in the skin, respectively. No such differences were observed in the placebo group. Patients in the probiotic group had an adjusted odds ratio of 28.4 (95% confidence interval = 2.2–411.1, $P<0.05$) to be rated by physicians as improved/markedly improved (versus worsened or unchanged) compared with the placebo group. We conclude that supplementation with the probiotic strain LGG normalizes skin expression of genes involved in insulin signalling and improves the appearance of adult acne.

Keywords: acne; probiotic; *Lactobacillus rhamnosus GG*; supplementation; insulin signalling; skin; gene expression
1. Introduction

Acne is a common chronic inflammatory disorder characterized by a number of different skin lesions, including comedones as well as painful and inflamed pustules and nodules (Tan and Bhate, 2015; Das and Reynolds, 2014). The pathogenesis of inflammatory acne is complex and involves increased sebum production and hyperplasia of the sebaceous glands under androgenic influence, ductal obstruction from increased keratinocyte desquamation and proliferation, Propionibacterium acne colonization, and inflammatory cell infiltration (Suh and Kwon, 2015; Tilles, 2014).

Accumulating evidence suggests that alterations in insulin signalling may play a significant role in the pathogenesis of adult acne (Cordain et al., 2002; Nagpal et al., 2016; Balta et al., 2015; Kumari and Thappa, 2013; Del Prete et al., 2012). Insulin and insulin-like growth factor-1 (IGF1) have been shown to exert acne-promoting actions (Melnik and Schmitz, 2009) and raised serum IGF1 levels have been associated with increased risk of post-adolescent acne in women (Aizawa and Niimura, 1995). In turn, congenital deficiency of insulin signalling has been linked to lower prevalence rates of acne (Melnik et al., 2011).

IGF1 potently stimulates both sebaceous lipogenesis and androgen receptor signalling by promoting nuclear extrusion of the androgen receptor through the forkhead box (FOX) transcription factor O1 (FOXO1) (Agamia et al., 2016; Mirdamadi et al., 2015). A relative deficiency of the nuclear transcription factor FOXO1 is increasingly being recognized as a key player in the pathogenesis of acne (Melnik and Schmitz 2103; Melnik, 2010).

Accordingly, downregulation of nuclear FOXO1 expression promotes lipogenesis, upregulation of inflammatory cytokines, and increased keratinocyte proliferation (Melnik and Schmitz 2103; Melnik, 2010). Conversely, retinoids commonly used to treat acne have been shown to restore physiological FOXO1 expression (Melnik and Schmitz 2013; Melnik, 2011).
Probiotics are live microorganisms that have recently emerged as natural therapeutics with the potential to improve the insulin signalling pathway (Hulston et al., 2015; Mazloom et al., 2013). For example, *Lactobacillus rhamnosus GG* (LGG) – one of the most extensively studied probiotic strain – has been shown to enhanced insulin sensitivity as well as reduce lipogenesis in experimental animals (Park et al., 2015; Kim et al., 2015). Notably, interest in the use of systemic probiotics in patients with acne is gaining momentum (Kumar et al., 2014; Bowe et al., 2014; Bowe, 2013; Bowe and Logan, 2011). Probiotics may act as modulators of the gut-skin axis by regulating intestinal permeability, which in turn is involved in the fine tuning of systemic inflammation, insulin signalling, and tissue lipid content (Bowe et al., 2014; Bowe and Logan, 2011). Probiotics have been previously studied as an adjunct for patients with acne treated with systemic antibiotics (Jung et al., 2013). However, it remains unknown whether systemic probiotics may exert positive effects on acne when administered as monotherapy.

Because both the gut-skin axis (Bowe et al., 2014; Bowe and Logan, 2011) and dysregulation of insulin signalling (Nagpal et al., 2016; Balta et al., 2015; Kumari and Thappa, 2013; Del Prete et al., 2012) have been implicated in the pathogenesis of adult acne, we designed the current pilot study to evaluate the effect of supplementation with the probiotic strain LGG on skin expression of genes involved in insulin signalling (*IGF1* and *FOXO1*). Our hypothesis was that normalization of insulin signalling in the skin elicited by the probiotic could lead to improvements in the clinical appearance of acne in adult subjects.

2. Materials and methods

Study subjects

The study sample consisted of 20 Caucasian adult subjects (14 females and 6 males; mean age: 33.7 ± 3.3 years) with active inflammatory acne on their back. Participants were enrolled
in private practices and dermatology clinics. Patients were excluded if they met one or more of the following criteria: 1) diabetes mellitus, 2) severe physical illnesses, including endocrine diseases, 3) use of oral contraceptives in the last 6 months, 4) pregnancy or breastfeeding, 5) use of steroids, 6) use of probiotics in the last 6 months, and 6) use of oral antibiotics, isotretinoin, benzoyl peroxide, and oral retinoids in the last 6 months. The study protocol was approved by the local ethics committee and complied with the tenets of the Declaration of Helsinki. Written informed consent was obtained from all participants.

Study design

This pilot study was designed as a 12-week, double-blinded, placebo-controlled, randomized study. All participants were asked to withdraw any topical product for two weeks before the beginning of the study. In addition, they were not allowed to use any topical or systemic products for acne throughout the entire study period. After the baseline visit, eligible subjects were randomly assigned in a 1:1 fashion to one of the following treatment arm: the probiotic group (n = 10) and the placebo group (n = 10). Randomization was performed using a computer-generated random number table. Patients in the probiotic group consumed for 12 weeks a liquid supplement containing LGG (Sacco s.r.l., Cadorago, Italy) at a dose of 3×10^9 CFU/day (75 mg/day). Patients in the placebo group consumed for 12 weeks an identical liquid that did not contain probiotics. The study materials were supplied by Biodue S.p.A. (Tavarnelle Val di Pesa, Italy).

Study endpoints

The study had three endpoints, as follows: 1) change in skin expression of *IGF1* and *FOXO1* genes in acne areas from baseline to the end of the study; 2) change in the investigator’s global improvement rating (Konishi *et al.*, 2007) on a five-point scale (-1, worsened; 0,
 unchanged; 1, improved; 2, markedly improved; and 3, resolved) from baseline to the end of
the study; and 3) tolerance (assessed by asking patients about any signs or symptoms of
systemic or local adverse reactions).

Gene expression data

Paired 4-mm skin punch biopsies in acne areas in the back – one obtained before treatment
initiation and one obtained at the end of the 12-week treatment period – were collected for
ribonucleic acid (RNA) extraction and gene expression analyses. RNA was isolated using the
RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol.
Agarose gel electrophoresis was used to check the integrity of RNA, whereas
spectrophotometry was utilized to measure RNA quantity. Isolated RNA (1 µg) underwent
reverse transcription with the iScript cDNA Synthesis Kit (BioRad, Hercules, CA, USA) and
the resulting cDNA was stored at −20°C. All quantitative real-time polymerase chain
reactions (qRT-PCR) were performed on a BioRad iQ5 Cycler (BioRad). The reaction
solution (25 µL) consisted of cDNA mixture (40 ng), forward and reverse primers (final
concentration 400 nM each, and the iQ SYBR Green Supermix (BioRad). The sequences of
the primers were as follows: *IGF1* forward, 5’-CTTCAGTTCTGTGTGGACAG-3’;
IGF1 reverse, 5’-CGCCCTCCGACTGCTG-3’; *FOXO1* forward, 5’-
GCCATGTAAAGTCCCATCAG-3’; *FOXO1* reverse, 5’-
ATCGGAACAAACGTGAATC-3’. The amplification conditions were as follows:
preheating at 95°C for 10 min, followed by 40 cycles of 95°C for 10 sec, 60°C for 15 sec, and
72°C for 30 sec. The Bio-Rad iQ5 Optical System Software Version 2.0 was used to analyze
fluorescence data. The expression of the genes of interest was normalized to the expression of
the glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) as a housekeeping gene. The
forward and reverse primer sequences used for *GAPDH* were 5’-

GAAGGTGAAGGTCGGAGTC-3’ and 5’-GAAGATGGTGATGGGATTTC-3’, respectively. Expression levels of mRNA were quantified according to the following formula: 2-\Delta CT, where \Delta CT (sample) was defined as CT (gene of interest) – CT (GAPDH).

Statistical analysis

Results are given as means and standard deviations or counts and percentages. Independent Student’s \(t \)-tests (continuous variables) and \(\chi^2 \) tests (categorical variables) were used to compare parameters between the two study groups. Pre- and post-treatment gene expression data were analyzed using paired Student’s \(t \)-tests after adjustment for age and sex. Logistic regression analysis was used to calculate the crude as well as the age- and sex- adjusted odds ratios (ORs) with their 95% confidence intervals (CIs) for being rated by the physicians as improved/markedly improved (versus worsened or unchanged) on the investigator’s global improvement rating. All analyses were conducted with the SPSS version 17.0 statistical software (SPSS Inc., Chicago, IL, USA). Two-tailed \(P \) values <0.05 were considered statistically significant.

3. Results

Changes in skin expression of IGF1 and FOXO1

The probiotic and control groups did not differ significantly in terms of age and sex (data not shown). In addition, baseline expression levels of IGF1 and FOXO1 in the skin of acne areas were similar in the two groups (Table 1). After 12 weeks, the probiotic group showed a 32% (\(P<0.001 \)) reduction as well as a 65% increase (\(P<0.001 \)) in IGF1 and FOXO1 gene expression in the skin, respectively. However, no significant changes were observed in the placebo group (Table 1).
Changes in the investigator’s global improvement rating

The changes in the investigator’s global improvement rating are summarized in Table 2.

Significant differences in the ratings were evident in the two study arms ($\chi^2 = 10.02$; d.f. = 4, $P<0.05$). Patients in the probiotic group were more likely to be rated by the physicians as improved/markedly improved (versus worsened or unchanged) compared with the placebo group (crude OR = 36.0; 95% CI = 2.7−476.3, $P<0.05$). After adjustment for age and sex, similar results were observed (adjusted OR = 28.4; 95% CI = 2.2−411.1, $P<0.05$).

Tolerance

The treatment was well-tolerated in all participants. No patient in either group discontinued treatment due to adverse local or systemic effects.

4. Discussion

Because gut microbiota may affect skin physiology (Kumar et al., 2014), oral delivery of probiotics is emerging as a promising approach to address common dermatological conditions (Bowe et al., 2014; Bowe, 2013; Bowe and Logan, 2011). This exploratory clinical study examined the effects of supplementation with LGG – one of the most extensively studied probiotic bacteria – in adult patients with acne. Our results demonstrate that 12 weeks of LGG administration normalized skin expression of insulin signalling genes in acne areas, a molecular change that was accompanied by a significant improvement in acne appearance. In addition, the treatment appeared to be safe and well-tolerated.

Growing evidence indicates that IGF1 (Melnik and Schmitz, 2009) and FOXO1 dysregulation (Agamia et al., 2016; Mirdamadi et al., 2015) may be involved in the pathogenesis of acne. The normalization of their skin expression levels following 12 weeks of LGG supplementation confirms that probiotics may act as clinically useful modulators of the gut-
skin axis. Although the exact mechanisms by which skin IGF1 and FOXO1 expression is normalized by LGG remain to be determined, it is possible that this probiotic strain may improve insulin resistance through direct metabolic effects and/or by correcting a state of intestinal dysbiosis (Park et al., 2015; Kim et al., 2013). Alterations in the gut microbiome and gut permeability can trigger innate immunity, with increased levels of circulating endotoxin that can in turn activate Toll-like receptors 2 and 4 (TLR-2 and TLR-4). The activation of TLR-2 and TLR-4 can induce the release of cytokines and the expression of metalloproteinases that ultimately aggravate acne (Dreno et al., 2015; Selway et al., 2013). Additionally, it has been shown that TLR-4 activation can inhibit expression of FOXO1 in macrophages through Akt signalling, and activate inflammatory pathways via NF-kB, promoting insulin resistance in different tissues (Fan et al., 2010). Notably, LGG has been shown to improve gut permeability (Wang et al., 2012; Sindhu et al., 2014). In this study, modulation of gut microbiota and permeability by LGG (with an associated reduction in endotoxemia and TLR-4 activation) may have lowered FOXO1 skin expression.

The positive effects of LGG observed in the current study are of particular interest because we included only patients with adult acne (in whom alimentary factors are deemed to play a role) (Agamia et al., 2016; Melnik et al., 2011). In designing the current study, we hypothesized that dysregulation of insulin signalling in the skin could not only play a major role in the pathogenesis of this condition but could also serve as a therapeutic target. To explore this possibility, we focused on the modulation of IGF1 and FOXO1 skin expression elicited by LGG, which was selected as a prototypical probiotic modulator of the gut-skin axis.

Interestingly, IGF1 and FOXO1 have been suggested to play a crucial role in the pharmacological action of oral isotretinoin (Melnik, 2011), one the most effective drug in the treatment of acne. Although LGG was used in monotherapy in the current study, our results may pave the way for the future investigation of this probiotic in combination with
isotretinoin. Specifically, further research is needed to investigate whether the addition of LGG may further provide an additional decline in the number of inflammatory and total acne lesions as compared with isotretinoin alone.

Several limitations of our study need to be acknowledged. First, this study was designed as an exploratory pilot project and the sample size was small. Although the improvement in acne appearance elicited by LGG supplementation was promising, our data need to be confirmed in clinical trials with larger sample sizes and longer treatment duration. We believe that our current findings provide a strong rationale for such a study. Second, the effect of LGG as an adjunct to acne medical therapy (e.g., antibiotics, retinoids, and isotretinoin) warrants further scrutiny. Third, it is important to note that all of our patients were adult. The question as to whether LGG supplementation may be helpful for adolescent acne requires further scrutiny. Fourth, gene expression studies were performed in acne areas of the back. Owing to this methodological approach, caution should be exercised when extrapolating our findings to other skin areas. Finally, all of the participants were Caucasian, and our findings might not be directly extrapolated to persons with different ethnic backgrounds.

In conclusion, our results demonstrated a normalization of cutaneous insulin signalling and an improved appearance of acne in adult patients who received LGG supplementation for 12 weeks. Further studies are necessary to investigate the exact mechanisms by which gut colonization of supplemented LGG could affect skin homeostasis through the modulation of the gut-skin axis and/or the restoration of an intestinal healthy microbiota.

Conflict of interest

This study was performed based on a collaboration between Enzo Emanuele and Biodue S.p.A. with partial sponsorship and supply of test materials. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References

Table 1. Changes from baseline to 12 weeks in relative gene expression values of *IGF1* and *
FOXO1* in skin biopsies obtained from the acne areas on the back in the two study groups

<table>
<thead>
<tr>
<th></th>
<th>Probiotic group (n = 10)</th>
<th>Placebo group (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>12 weeks</td>
</tr>
<tr>
<td>IGF1</td>
<td>2.31 ± 0.91</td>
<td>1.56 ± 0.77*</td>
</tr>
<tr>
<td>FOXO1</td>
<td>0.81 ± 0.15</td>
<td>1.34 ± 0.26*</td>
</tr>
</tbody>
</table>

Levels of mRNA were determined after adjustment for age and sex with the following formula: \(2^{-\Delta CT}\), where \(\Delta CT\) (sample) was defined as CT (gene of interest) – CT (*GAPDH*).

*P<0.001 versus baseline.
Table 2. Change from baseline to 12 weeks in the investigator’s global improvement rating of adult acne in the two study groups

<table>
<thead>
<tr>
<th>Rating</th>
<th>Probiotic group (n = 10)</th>
<th>Placebo group (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worsened</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Unchanged</td>
<td>2 (20%)</td>
<td>9 (90%)</td>
</tr>
<tr>
<td>Improved</td>
<td>6 (60%)</td>
<td>1 (10%)</td>
</tr>
<tr>
<td>Markedly improved</td>
<td>2 (20%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Resolved</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Data are given as counts and percentages.